Abstract

BackgroundNanometer silicon dioxide (nano-SiO2) has a wide variety of applications in material sciences, engineering and medicine; however, the potential cell biological and proteomic effects of nano-SiO2 exposure and the toxic mechanisms remain far from clear.ResultsHere, we evaluated the effects of amorphous nano-SiO2 (15-nm, 30-nm SiO2). on cellular viability, cell cycle, apoptosis and protein expression in HaCaT cells by using biochemical and morphological analysis, two-dimensional differential gel electrophoresis (2D-DIGE) as well as mass spectrometry (MS). We found that the cellular viability of HaCaT cells was significantly decreased in a dose-dependent manner after the treatment of nano-SiO2 and micro-sized SiO2 particles. The IC50 value (50% concentration of inhibition) was associated with the size of SiO2 particles. Exposure to nano-SiO2 and micro-sized SiO2 particles also induced apoptosis in HaCaT cells in a dose-dependent manner. Furthermore, the smaller SiO2 particle size was, the higher apoptotic rate the cells underwent. The proteomic analysis revealed that 16 differentially expressed proteins were induced by SiO2 exposure, and that the expression levels of the differentially expressed proteins were associated with the particle size. The 16 proteins were identified by MALDI-TOF-TOF-MS analysis and could be classified into 5 categories according to their functions. They include oxidative stress-associated proteins; cytoskeleton-associated proteins; molecular chaperones; energy metabolism-associated proteins; apoptosis and tumor-associated proteins.ConclusionsThese results showed that nano-SiO2 exposure exerted toxic effects and altered protein expression in HaCaT cells. The data indicated the alterations of the proteins, such as the proteins associated with oxidative stress and apoptosis, could be involved in the toxic mechanisms of nano-SiO2 exposure.

Highlights

  • Nanometer silicon dioxide has a wide variety of applications in material sciences, engineering and medicine; the potential cell biological and proteomic effects of nano-SiO2 exposure and the toxic mechanisms remain far from clear

  • The results showed that the particle sizes of 15-nm, 30-nm and micro-sized SiO2 particles were consistent with the ones provided by the manufacturer

  • The data showed that the levels of the differentially expressed proteins were associated with the particle size

Read more

Summary

Introduction

Nanometer silicon dioxide (nano-SiO2) has a wide variety of applications in material sciences, engineering and medicine; the potential cell biological and proteomic effects of nano-SiO2 exposure and the toxic mechanisms remain far from clear. With the rapid development of nanotechnology and its applications, nano-structured materials have been widely used in the fields of biomedicine, pharmaceutical, and other industrial business. Nanometer silicon dioxide (nano-SiO2) is one of the most popular nanomaterials that are being used in these fields such as industrial manufacturing, packaging, high-molecule composite materials and ceramics synthesis, disease labeling, drug delivery, cancer therapy and biosensor. Nano-SiO2 particles can be readily evaporated into air due to their very low density. Inhalation of SiO2 nanoparticles causes protein expression in human epidermal keratinocyte cell line HaCaT

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call