Abstract

Cutting tools with higher wear resistance are those manufactured by powder metallurgy process, which combines the development of materials and design properties, features of shape-making technology and sintering. The annual global market of cutting tools consumes about US$ 12 billion; therefore, any research to improve tool designs and machining process techniques adds value or reduces costs. The aim is to describe the Spark Plasma Sintering (SPS) of cutting tools in functionally gradient materials, to show this structure design suitability through thermal residual stress model and, lastly, to present two kinds of inserts. For this, three cutting tool materials were used (Al2O3-ZrO2, Al2O3-TiC and WC-Co). The samples were sintered by SPS at 1300°C and 70MPa. The results showed that mechanical and thermal displacements may be separated during thermal treatment for analysis. Besides, the absence of cracks indicated coherence between experimental results and the residual stresses predicted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.