Abstract

Sintering and crystallization of a 23.12 mol% Li2O, 11.10 mol% ZrO2, 65.78 mol% SiO2 glass powder was investigated. By means of thermal shrinkage measurements, sintering was found to start at about 650°C and completed in a very short temperature interval (ΔT similar/congruent 100°C) in less than 30 min. Crystallization took place just after completion of sintering and was almost complete at about 900°C in 20 min. Secondary porosity prevailed over the primary porosity during the crystallization stage. The glass powder compacts first crystallized into lithium metasilicate (Li2SiO3), which transformed into lithium disilicate (Li2Si2O5), zircon (ZrSiO4), and tridymite (SiO2) after the crystallization process was essentially complete. The microstructure was characterized by fine crystals uniformly distributed and arbitrarily oriented throughout the residual glass phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.