Abstract
Lipid A is the hydrophobic anchor of lipopolysaccharide (LPS) in the outer membrane of Gram-negative bacteria. Lipid A of all Rhizobiaceae is acylated with a long fatty acid chain, 27-hydroxyoctacosanoic acid. Biosynthesis of this long acyl substitution requires a special acyl carrier protein, AcpXL, which serves as a donor of C28 (omega-1)-hydroxylated fatty acid for acylation of rhizobial lipid A (Brozek, K.A., Carlson, R.W., and Raetz, C. R. (1996) J. Biol. Chem. 271, 32126-32136). To determine the biological function of the C28 acylation of lipid A, we constructed an acpXL mutant of Sinorhizobium meliloti strain 1021. Gas-liquid chromatography and mass spectrometry analysis of the fatty acid composition showed that the acpXL mutation indeed blocked C28 acylation of lipid A. SDS-PAGE analysis of acpXL mutant LPS revealed only a fast migrating band, rough LPS, whereas the parental strain 1021 manifested both rough and smooth LPS. Regardless of this, the LPS of parental and mutant strains had a similar sugar composition and exposed the same antigenic epitopes, implying that different electrophoretic profiles might account for different aggregation properties of LPS molecules with and without a long acyl chain. The acpXL mutant of strain 1021 displayed sensitivity to deoxycholate, delayed nodulation of Medicago sativa, and a reduced competitive ability. However, nodules elicited by this mutant on roots of M. sativa and Medicago truncatula had a normal morphology and fixed nitrogen. Thus, the C28 fatty acid moiety of lipid A is not crucial, but it is beneficial for establishing an effective symbiosis with host plants. acpXL lies upstream from a cluster of five genes, including msbB (lpxXL), which might be also involved in biosynthesis and transfer of the C28 fatty acid to the lipid A precursor.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have