Abstract

More than a thousand sinkholes have developed along the western coast of the Dead Sea since the early 1980s, more than 75% of them since 1997, all occurring within a narrow strip 60 km long and <1 km wide. This highly dynamic sinkhole development has accelerated in recent years to a rate of ∼150–200 sinkholes per year. The sinkholes cluster mostly over specific sites up to 1000 m long and 200 m wide, which spread parallel to the general direction of the fault system associated with the Dead Sea Transform. Research employing borehole and geophysical tools reveals that the sinkhole formation results from the dissolution of an ∼10,000-yr-old salt layer buried at a depth of 20–70 m below the surface. The salt dissolution by groundwater is evidenced by direct observations in test boreholes; these observations include large cavities within the salt layer and groundwater within the confined subaquifer beneath the salt layer that is undersaturated with respect to halite. Moreover, the groundwater brine within the salt layer exhibits geochemical evidence for actual salt dissolution (Na/Cl = 0.5–0.6 compared to Na/Cl = 0.25 in the Dead Sea brine). The groundwater heads below the salt layer have the potential for upward cross-layer flow, and the water is actually invading the salt layer, apparently along cracks and active faults. The abrupt appearance of the sinkholes, and their accelerated expansion thereafter, reflects a change in the groundwater regime around the shrinking lake and the extreme solubility of halite in water. The eastward retreat of the shoreline and the declining sea level cause an eastward migration of the fresh–saline water interface. As a result the salt layer, which originally was saturated with Dead Sea water over its entire spread, is gradually being invaded by fresh groundwater at its western boundary, which mixes and displaces the original Dead Sea brine. Accordingly, the location of the western boundary of the salt layer, which dates back to the shrinkage of the former Lake Lisan and its transition to the current Dead Sea, constrains the sinkhole distribution to a narrow strip along the Dead Sea coast. The entire phenomenon can be described as a hydrological chain reaction; it starts by intensive extraction of fresh water upstream of the Dead Sea, continues with the eastward retreat of the lake shoreline, which in turn modifies the groundwater regime, finally triggering the formation of sinkholes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.