Abstract

The purpose of this paper is to use a wavelet technique to generate accurate responses for models characterized by the singularly perturbed generalized Burgers-Huxley equation (SPGBHE) while taking multi-resolution features into account. The SPGBHE’s behaviours have been captured correctly depending on the dominance of advection and diffusion processes. It should be noted that the required response was attained through integration and by marching on time. The wavelet method is seen to be very capable of solving a singularly perturbed nonlinear process without linearization by utilizing multi-resolution features. Haar wavelet method results are compared with corresponding results in the literature and are found in agreement in determining the numerical behaviour of singularly perturbed advection–diffusion processes. The most outstanding aspects of this research are to utilize the multi-resolution properties of wavelets by applying them to a singularly perturbed nonlinear partial differential equation and that no linearization is needed for this purpose.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.