Abstract
We analyse an equation describing the motion of the material interface between two fluids in a pressure field. The interface can be expressed as the image of the unit circle under a certain time depending conformal map. This conformal transformation maps the exterior of the unit circle onto the region occupied by one of the fluids. The conformal map has singularities in the unit disc. As long as these singularities are close to the origin, the complicated non-local equation governing the evolution of the conformal map can be approximated by a somewhat simpler, local equation. We prove that there exist self-similar solutions of this equation, that they have singularities away from the origin, that these singularities hit in finite time the unit circle and that the self-similar blow up is stable to perturbations that respect the symmetry of the self-similar profile.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.