Abstract

We use the tools of the J-matrix method to evaluate the S-matrix and then deduce the bound and resonance states energies for singular screened Coulomb potentials, both analytic and piecewise differentiable. The J-matrix approach allows us to absorb the 1 / r singularity of the potential in the reference Hamiltonian, which is then handled analytically. The calculation is performed using an infinite square integrable basis that supports a tridiagonal matrix representation for the reference Hamiltonian. The remaining part of the potential, which is bound and regular everywhere, is treated by an efficient numerical scheme in a suitable basis using Gauss quadrature approximation. To exhibit the power of our approach we have considered the most delicate region close to the bound-unbound transition and compared our results favorably with available numerical data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.