Abstract

We investigate the dynamics of resonant Hamiltonians with n degrees of freedom to which we attach a small perturbation. Our study is based on the geometric interpretation of singular reduction theory. The flow of the Hamiltonian vector field is reconstructed from the cross sections corresponding to an approximation of this vector field in an energy surface. This approximate system is also built using normal forms and applying reduction theory obtaining the reduced Hamiltonian that is defined on the orbit space. Generically, the reduction is of singular character and we classify the singularities in the orbit space, getting three different types of singular points. A critical point of the reduced Hamiltonian corresponds to a family of periodic solutions in the full system whose characteristic multipliers are approximated accordingly to the nature of the critical point.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.