Abstract

Active disturbance rejection controllers have been widely employed for governing a class of high-dimensional lightly damped systems with multiple eigenmodes. Nevertheless, previous studies rarely focused on the impact of neglected fast resonant mode dynamics on the nominal input gain, especially if high-frequency unmodeled resonant dynamics gradually approach the target control bandwidth. Here, we have quantitatively analyzed the effect of fast resonant mode dynamics on the nominal input gain using the singular perturbation method. A practical method for estimating the nominal input gain is provided for various control bandwidths. The stability bound associated with the fast resonant mode and coupling dynamics between the slow and fast resonant modes is also investigated. Finally, the validity and superiority of the proposed method are demonstrated through simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.