Abstract

This paper extends a strong-form meshless boundary collocation method, named the singular boundary method (SBM), for the solution of dynamic poroelastic problems in the frequency domain, which is governed by Biot equations in the form of mixed displacement–pressure formulation. The solutions to problems are represented by using the fundamental solutions of the governing equations in the SBM formulations. To isolate the singularities of the fundamental solutions, the SBM uses the concept of the origin intensity factors to allow the source points to be placed on the physical boundary coinciding with collocation points, which avoids the auxiliary boundary issue of the method of fundamental solutions (MFS). Combining with the origin intensity factors of Laplace and plane strain elastostatic problems, this study derives the SBM formulations for poroelastic problems. Five examples for 2D poroelastic problems are examined to demonstrate the efficiency and accuracy of the present method. In particular, we test the SBM to the multiply connected domain problem, the multilayer problem and the poroelastic problem with corner stress singularities, which are all under varied ranges of frequencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call