Abstract

In this paper, state transition waves are investigated in a (2+1)-dimensional Korteweg–de Vries-Sawada-Kotera-Ramani equation by analyzing characteristic lines. Firstly, the N-soliton solutions are given by using the Hirota bilinear method. The breather and lump waves are constructed by applying complex conjugation limits and the long-wave limit method to the parameters. In addition, the transition condition of breather and lump wave are obtained by using characteristic line analysis. The state transition waves consist of quasi-anti-dark soliton, M-shaped soliton, oscillation M-shaped soliton, multi-peak soliton, W-shaped soliton, and quasi-periodic wave soliton. Through analysis, when solitary wave and periodic wave components undergo nonlinear superposition, it leads to the formation of breather waves and transformed wave structures. It can be used to explain the deformable collisions of transformation waves after collision. Furthermore, the time-varying property of transformed waves are studied using characteristic line analysis. Based on the high-order breather solutions, the interactions involving breathers, state transition waves, and solitons are exhibited. Finally, the dynamics of these hybrid solutions are analyzed through symbolic computations and graphical representations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.