Abstract

The objective of our research is to design a single-well injection-withdrawal test to evaluate residual phase trapping at potential CO 2 geological storage sites. Given the significant depths targeted for CO 2 storage and the resulting high costs associated with drilling to those depths, it is attractive to develop a single-well test that can provide data to assess reservoir properties and reduce uncertainties in the appraisal phase of site investigation. The main challenges in a single-well test design include (1) difficulty in quantifying the amount of CO 2 that has dissolved into brine or migrated away from the borehole; (2) non-uniqueness and uncertainty in the estimate of the residual gas saturation ( S gr ) due to correlations among various parameters; and (3) the potential biased S gr estimate due to unaccounted heterogeneity of the geological medium. To address each of these challenges, we propose (1) to use a physical-based model to simulation test sequence and inverse modeling to analyze data information content and to quantify uncertainty; (2) to jointly use multiple data types generated from different kinds of tests to constrain the S gr estimate; and (3) to reduce the sensitivity of the designed tests to geological heterogeneity by conducting the same test sequence in both a water-saturated system and a system with residual gas saturation. To perform the design calculation, we build a synthetic model and conduct a formal analysis for sensitivity and uncertain quantification. Both parametric uncertainty and geological uncertainty are considered in the analysis. Results show (1) uncertainty in the estimation of S gr can be reduced by jointly using multiple data types and repeated tests; and (2) geological uncertainty is essential and needs to be accounted for in the estimation of S gr and its uncertainty. The proposed methodology is applied to the design of a CO 2 injection test at CO2CRC's Otway Project Site, Victoria, Australia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call