Abstract

Residual or capillary trapping is one of the key trapping mechanisms for geological storage of CO2. Yet, very few studies so far have attempted to estimate the residual trapping and the related characteristic parameter, residual saturation, in situ. At Heletz, a pilot CO2 injection site in Israel a single-well push-pull experiment to estimate residual gas saturation in situ was carried out during autumn 2016. The main characterization method was hydraulic withdrawal tests. The residually trapped zone was also created by means of fluid withdrawal, by first injecting CO2 and then withdrawing fluids leaving behind the immobile residual CO2. This paper presents the first model interpretation of the experimental results. Numerical modeling with TOUGH2/ECO2N was carried out to model the entire test sequence, the focus being in matching the collected pressure, temperature and flow data as well as observations of gas content in the borehole. The experimental results could be well fitted with the model that also is in agreement with previously collected petro-physical data. The results indicate a somewhat lower residual gas saturation than that measured in the laboratory, the estimated maximum residual saturation from the field experiment being 10% and the corresponding value from the core 20%. The results also indicate that most of the CO2 entered the upper reservoir layer, thus actually giving an estimate of the effective residual trapping in that layer. Overall, pressure response gave a clear signal and was an effective method in getting an estimate of the effective residual trapping in the interval tested.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call