Abstract

AbstractClustering plays an important role in data mining, pattern recognition, and machine learning. Then, single-valued neutrosophic sets (SVNSs) are a useful means to describe and handle indeterminate and inconsistent information, which fuzzy sets and intuitionistic fuzzy sets cannot describe and deal with. To cluster the data represented by single-value neutrosophic information, the article proposes a single-valued neutrosophic minimum spanning tree (SVNMST) clustering algorithm. Firstly, we defined a generalized distance measure between SVNSs. Then, we present an SVNMST clustering algorithm for clustering single-value neutrosophic data based on the generalized distance measure of SVNSs. Finally, two illustrative examples are given to demonstrate the application and effectiveness of the developed approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.