Abstract
Clustering plays an important role in data mining, pattern recognition, and machine learning. Then, single-valued neutrosophic sets (SVNSs) can describe and handle indeterminate and inconsistent information, while fuzzy sets and intuitionistic fuzzy sets cannot describe and deal with it. To cluster the information represented by single-valued neutrosophic data, this paper proposes single-valued neutrosophic clustering algorithms based on similarity measures of SVNSs. Firstly, we introduce a similarity measure between SVNSs based on the min and max operators and propose another new similarity measure between SVNSs. Then, we present clustering algorithms based on the similarity measures of SVNSs for the clustering analysis of single-valued neutrosophic data. Finally, an illustrative example is given to demonstrate the application and effectiveness of the single-valued neutrosophic clustering algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.