Abstract
We assessed the performance of single-step genomic prediction of breeding values for superovulatory response traits in Japanese Black donor cows. A total of 25,332 records of the total number of embryos and oocytes (TNE) and the number of good embryos (NGE) per flush for 1874 Japanese Black donor cows were collected during 2008 and 2022. Genotype information on 36,426 autosomal single-nucleotide polymorphisms (SNPs) for 575 out of the 1,874 cows was used. Breeding values were predicted exploiting a two-trait repeatability animal model. Two genetic relationship matrices were used, one based on pedigree information (A matrix) and the other considering both pedigree and SNP marker genotype information (H matrix). Estimated heritabilities of TNE and NGE were 0.18 and 0.11, respectively, when using the H matrix, which were both slightly lower than when using the A matrix (0.26 for TNE and 0.16 for NGE). Estimated genetic correlations between the traits were 0.61 and 0.66 when using H and A matrices, respectively. When the variance components were the same in breeding value prediction, the mean reliability was greater when using the H matrix than when using the A matrix. This advantage seems more prominent for cows with low reliability when using the A matrix. The results imply that introducing single-step genomic prediction could boost the rate of genetic improvement of superovulatory response traits, but efforts should be made to maintain genetic diversity when performing selection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.