Abstract

We propose an explicit, single-step discontinuous Galerkin method on moving grids using the arbitrary Lagrangian–Eulerian approach for one-dimensional Euler equations. The grid is moved with the local fluid velocity modified by some smoothing, which is found to considerably reduce the numerical dissipation introduced by Riemann solvers. The scheme preserves constant states for any mesh motion and we also study its positivity preservation property. Local grid refinement and coarsening are performed to maintain the mesh quality and avoid the appearance of very small or large cells. Second, higher order methods are developed and several test cases are provided to demonstrate the accuracy of the proposed scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.