Abstract

We propose an explicit in time- discontinuous Galerkin scheme on moving grids using the arbitrary Lagrangian–Eulerian approach for one-dimensional Euler equations. The grid is moved with a velocity that is close to the local fluid velocity, which considerably reduces the numerical dissipation in the Riemann solvers. Local grid refinement and coarsening are performed to maintain the mesh quality and avoid very small or large cells. Second-, third-, and fourth-order methods are developed and several test cases are provided to demonstrate the accuracy of the proposed scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.