Abstract

This paper presents the results of experiments on the development of the technology of MEMS alkali vapor cells for a miniature quantum frequency standard. The classical design of a two-chamber silicon cell containing an optical chamber, shallow filtration channels and a technical container for a solid-state alkali source was implemented in a single-step process of wet anisotropic silicon etching. To prevent the destruction of the filtration channels during etching of the through silicon cavities, the shapes of the compensating structures at the convex corners of the silicon nitride mask were calculated and the composition of the silicon etchant was experimentally found. The experiments results were used in the manufacture of chip-scale atomic clock cells containing vapors of 87Rb or 133Cs isotopes in the neon atmosphere.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.