Abstract

We present the experimental observation of a large exchange coupling J ≈ 300 μeV between two (31)P electron spin qubits in silicon. The singlet and triplet states of the coupled spins are monitored in real time by a single-electron transistor, which detects ionization from tunnel-rate-dependent processes in the coupled spin system, yielding single-shot readout fidelities above 95%. The triplet to singlet relaxation time T(1) ≈ 4 ms at zero magnetic field agrees with the theoretical prediction for J-coupled 31P dimers in silicon. The time evolution of the two-electron state populations gives further insight into the valley-orbit eigenstates of the donor dimer, valley selection rules and relaxation rates, and the role of hyperfine interactions. These results pave the way to the realization of two-qubit quantum logic gates with spins in silicon and highlight the necessity to adopt gating schemes compatible with weak J-coupling strengths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.