Abstract

It is challenging to stably and rapidly achieve accurate absolute phase retrieval for isolated objects with a single-shot pattern in fringe projection profilometry (FPP). In this context, a single-shot multi-frequency absolute phase retrieval (SAPR-DL) method based on deep learning is proposed, which only needs to capture one fringe image to obtain the full-field precise absolute phase. Specifically, a low-frequency deformed fringe image is loaded into the trained one-to-two deep learning framework (DLFT) to predict unit-frequency and high-frequency deformed fringe images. Then, three fringe images with different frequencies are loaded into the trained deep learning phase retrieval framework (DLPR) to calculate the corresponding absolute phase. The experimental results prove that the proposed SAPR-DL method can obtain the three-dimensional (3D) shape measurement of multiple complex objects by collecting a single-shot fringe image, showing great prospects in advancing scientific and engineering applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call