Abstract
A new single-shot echo-planar imaging (EPI) sequence with interleaved z-shim and optimized compensation for susceptibility-induced signal loss is proposed in this paper. Experiments on human brain demonstrated that the new method is able to regain signal dropout in brain areas with severe susceptibility-induced local gradients, while its image acquisition speed is comparable to that of conventional single-shot EPI techniques. Significant signal-to-noise ratio improvements were demonstrated in the ventral prefrontal and lateral temporal lobes with the new technique compared to a conventional EPI. Brain activation experiments with a bilateral finger-tapping task were performed with intentionally introduced local gradients near the left sensorimotor cortex, by a small gadolinium (Gd)-doped bottle placed on the left side of the head. The results of the functional experiments showed that the interleaved z-shim EPI sequence effectively recovered the signal loss caused by the Gd-doped bottle and reliably detected activation signals in bilateral sensorimotor regions, while the activation signals on the left side diminished considerably in a conventional EPI technique. The new technique, with the capability of reducing susceptibility artifacts and rapid scanning speed, may be particularly useful for event-related functional MRI experiments in the base of the brain, which are of great importance in neuropsychiatric studies.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have