Abstract

Global distributions of the aerosol optical thickness, Angstrom exponent, and single-scattering albedo are simulated using an aerosol transport model coupled with an atmospheric general circulation model. All the main tropospheric aerosols are treated, that is, carbonaceous (organic and black carbons), sulfate, soil dust, and sea salt aerosols. The simulated total aerosol optical thickness, Angstrom exponent, and single-scattering albedo for mixtures of four aerosol species are compared with observed values from both optical ground-based measurements and satellite remote sensing retrievals at dozens of locations including seasonal variations. The mean difference between the simulation and observations is found to be less than 30% for the optical thickness and less than 0.05 for the single-scattering albedo in most regions. The simulated single-scattering albedo over the Saharan region is, however, substantially smaller than the observation, though the standard optical constant of soil dust is used in this study. The radiative forcing by the direct effect of the main tropospheric aerosols is then estimated. The global annual mean values of the total direct radiative forcing of anthropogenic carbonaceous plus sulfate aerosols are calculated to be 20.19 and 20.75 W m22 under whole-sky and clear-sky conditions at the tropopause, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.