Abstract

A quantum cascade laser (QCL)-based absorption sensor for the simultaneous dual-species monitoring of CH4 and N2O was developed using a novel compact multipass gas cell (MGC). This sensor uses a thermoelectrically cooled, continuous wave, distributed feedback QCL operating at ~7.8 µm. The QCL wavelength was scanned over two neighboring CH4 (1275.04 cm−1) and N2O (1274.61 cm−1) lines at a 1 Hz repetition rate. Wavelength modulation spectroscopy (f = 10 kHz) with second harmonic (2f) detection was performed to enhance the signal-to-noise ratio. An ultra-compact MGC (16.9 cm long and a 225 ml sampling volume) was utilized to achieve an effective optical path length of 57.6 m. With such a sensor configuration, a detection limit of 5.9 ppb for CH4 and 2.6 ppb for N2O was achieved, respectively, at 1-s averaging time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.