Abstract
A compact mid-infrared (MIR) dual-gas sensor system was demonstrated for simultaneous detection of methane (CH4) and ethane (C2H6) using a single continuous-wave (CW) interband cascade laser (ICL) based on tunable laser absorption spectroscopy (TDLAS) and wavelength modulation spectroscopy (WMS). Ultracompact custom electronics were developed, including a laser current driver, a temperature controller and a lock-in amplifier. These custom electronics reduce the size and weight of the sensor system as compared with a previous version based on commercial electronics. A multipass gas cell with an effective optical length of 54.6 m was employed to enhance the absorption signal. A 3337 nm ICL was capable of targeting a C2H6 absorption line at 2996.88 cm-1 and a CH4 line at 2999.06 cm-1. Dual-gas detection was realized by scanning both the CH4 and C2H6 absorption lines. Based on an Allan deviation analysis, the 1 σ minimum detection limit (MDL) was 17.4 ppbv for CH4 and 2.4 ppbv for C2H6 with an integration time of 4.3 s. TDLAS based sensor measurements for both indoor and outdoor mixing ratios of CH4 and C2H6 were conducted. The reported single ICL based dual-gas sensor system has the advantages of reduced size and cost without influencing the midinfrared sensor detection sensitivity, selectivity and reliability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.