Abstract
Single-cell transcriptomics techniques, such as scRNA-seq, attempt to characterize gene expression profiles in each cell of a heterogeneous sample individually. Due to growing amounts of data generated and the increasing complexity of the computational protocols needed to process the resulting datasets, the demand for dedicated training in mathematical and programming skills may preclude the use of these powerful techniques by many teams. In order to help close that gap between wet-lab and dry-lab capabilities we have developed SinglePointRNA, a shiny-based R application that provides a graphic interface for different publicly available tools to analyze single cell RNA-seq data. The aim of SinglePointRNA is to provide an accessible and transparent tool set to researchers that allows them to perform detailed and custom analysis of their data autonomously. SinglePointRNA is structured in a context-driven framework that prioritizes providing the user with solid qualitative guidance at each step of the analysis process and interpretation of the results. Additionally, the rich user guides accompanying the software are intended to serve as a point of entry for users to learn more about computational techniques applied to single cell data analysis. The SinglePointRNA app, as well as case datasets for the different tutorials are available at www.github.com/ScienceParkMadrid/SinglePointRNA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.