Abstract
The advent of single-cell sequencing is providing unprecedented opportunities to disentangle tissue complexity and investigate cell identities and functions. However, the analysis of single cell data is a challenging, multi-step process that requires both advanced computational skills and biological sensibility. When dealing with single cell RNA-seq (scRNA-seq) data, the presence of technical artifacts, noise, and biological biases imposes to first identify, and eventually remove, unreliable signals from low-quality cells and unwanted sources of variation that might affect the efficacy of subsequent downstream modules. Pre-processing and quality control (QC) of scRNA-seq data is a laborious process consisting in the manual combination of different computational strategies to quantify QC-metrics and define optimal sets of pre-processing parameters.Here we present popsicleR, a R package to interactively guide skilled and unskilled command line-users in the pre-processing and QC analysis of scRNA-seq data. The package integrates, into several main wrapper functions, methods derived from widely used pipelines for the estimation of quality-control metrics, filtering of low-quality cells, data normalization, removal of technical and biological biases, and for cell clustering and annotation. popsicleR starts from either the output files of the Cell Ranger pipeline from 10X Genomics or from a feature-barcode matrix of raw counts generated from any scRNA-seq technology. Open-source code, installation instructions, and a case study tutorial are freely available at https://github.com/bicciatolab/popsicleR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.