Abstract

Single photons exhibit inherently quantum and unintuitive properties such as the Hong-Ou-Mandel effect, demonstrating their bosonic and quantized nature, yet at the same time may correspond to single excitations of spatial or temporal modes with a very complex structure. Those two features are rarely seen together. Here we experimentally demonstrate how the Hong-Ou-Mandel effect can be spectrally resolved and harnessed to characterize a complex temporal mode of a single-photon-a zero-area pulse-obtained via a resonant interaction of a terahertz-bandwidth photon with a narrow gigahertz-wide atomic transition of atomic vapor. The combination of bosonic quantum behavior with bandwidth-mismatched light-atom interaction is of fundamental importance for deeper understanding of both phenomena, as well as their engineering offering applications in characterization of ultrafast transient processes.

Highlights

  • Single photons (SPs) exhibit a plethora of highly nonclassical features manifesting their quantized and bosonic nature and demonstrating the meanders of quantum theory

  • Single photons exhibit inherently quantum and unintuitive properties such as the Hong-Ou-Mandel effect, demonstrating their bosonic and quantized nature, yet at the same time may correspond to single excitations of spatial or temporal modes with a very complex structure

  • The nonclassical features of SPs become intriguing when the spatial or temporal mode has a nontrivial structure with added qualitative features, such as orbital angular momentum (OAM)

Read more

Summary

Introduction

Single photons (SPs) exhibit a plethora of highly nonclassical features manifesting their quantized and bosonic nature and demonstrating the meanders of quantum theory. Single photons exhibit inherently quantum and unintuitive properties such as the Hong-Ou-Mandel effect, demonstrating their bosonic and quantized nature, yet at the same time may correspond to single excitations of spatial or temporal modes with a very complex structure.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.