Abstract

We investigate the influence of the electron-phonon coupling in the one-dimensional spinless Holstein model at half-filling using both a recently developed projector-based renormalization method (PRM) and an refined exact diagonalization technique in combination with the kernel polynomial method. At finite phonon frequencies the system shows a metal-insulator transition accompanied by the appearance of a Peierls distorted state at a finite critical electron-phonon coupling. We analyze the opening of a gap in terms of the (inverse) photoemission spectral functions which are evaluated in both approaches. Moreover, the PRM approach reveals the softening of a phonon at the Brillouin-zone boundary which can be understood as precursor effect of the gap formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.