Abstract
Chlorophyll fluorescence imaging is a non-invasive method to monitor the metabolic state of photosynthetic organisms. We used spatially resolved (imaging) microscopic measurements of chlorophyll fluorescence kinetics to follow the fate of individual cells of the filamentous brown alga Pylaiella littoralis infected by the biotrophic parasite Chytridium polysiphoniae (Chytridiomycota). These measurements showed strong differences between individual parameters of the inhibition of photosynthesis, revealing important details about the mechanism of damage. The dark-adapted photochemistry of photosystem II itself (measured as Fv/Fm, where Fv = Fm − F0) remained unaffected until a very late stage of damage to the cell, while the light-adapted efficiency of PSII electron transport decreased earlier. A particularly complex pattern was found for the changes in nonphotochemical quenching (NPQ). The shape of the fluorescence transients suggests that the changes in NPQ during the actinic light period are caused by changes in F0. The infection affected NPQ directly after the onset of the actinic light period more than in the steady state of photosynthesis. These results indicate that the infection affects the regulation of energy dissipation (e.g. by changes in antenna coupling). In early infection stages, NPQ increased, which is reflected by an increase in the ‘vitality parameter’ (relative fluorescence decrease, defined as (Fp − Fs)/Fs). In the second half of the infection process, all photosynthetic parameters declined, including the efficiency of photosystem II as measured by Fv/Fm, and NPQ.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.