Abstract

We report the synthesis and structure of single-walled aluminosilicate nanotubes with microporous zeolitic walls. This quasi-one-dimensional zeolite is assembled by a bolaform structure-directing agent (SDA) containing a central biphenyl group connected by C10 alkyl chains to quinuclidinium end groups. High-resolution electron microscopy and diffraction, along with other supporting methods, revealed a unique wall structure that is a hybrid of characteristic building layers from two zeolite structure types, beta and MFI. This hybrid structure arises from minimization of strain energy during the formation of a curved nanotube wall. Nanotube formation involves the early appearance of a mesostructure due to self-assembly of the SDA molecules. The biphenyl core groups of the SDA molecules show evidence of π stacking, whereas the peripheral quinuclidinium groups direct the microporous wall structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call