Abstract

This paper studies the relation between photoexcitation of a single-walled carbon nanotube (SWNT) based device, and its THz output power in the context of THz photoconductive (PC) switching and THz photomixing. A detailed approach of calculating output THz power for such a device describes the effect of each parameter on the performance of the THz PC switch and highlights the design dependent achievable limits. A numerical assessment, with typical values for each parameter, shows that-subject to thermal stability of the device-SWNT based PC switch can improve the output power by almost two orders of magnitudes compared to conventional materials such as LT-GaAs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call