Abstract

Full-thickness wounds are difficult to heal spontaneously. Scaffolds, meant for treating full-thickness wounds, should ensure proper tissue regeneration, both structurally and functionally. An ideal scaffold should mimic the physical, mechanical and biochemical properties of natural skin. However, available mono- or bi-layer skin scaffolds lack in the precise architecture and functionality, thus, failing to provide scar-free regeneration of full-thickness skin wounds. These unmet challenges of scar-free skin regeneration have been addressed in the present study for the first time. This research deals with the synthesis of a low-cost, structurally and functionally graded single unit biodegradable polymeric scaffold. The functional gradient in this scaffold was achieved by varying polymer concentration and electrospinning parameters. This gradient in the scaffold provided the required microenvironment for proper functional and structural reconstruction of all the layers of natural skin. The mechanical property of the scaffold matched that of the natural skin. Besides, the degradation kinetics of the scaffold was in coordination with the regeneration time for the full-thickness wound. The porosity and hydrophilicity gradients of the scaffold helped it mimic the in vivo hypodermal, dermal and epidermal microenvironments of the skin, simultaneously. Co-culturing PCS-201 (dermal fibroblasts) and HaCaT (keratinocytes) on the scaffold resulted in successful regeneration through cellular proliferation, differentiation and organization of the skin tissue. The scaffold also displayed better wound healing in vivo, in terms of speedy wound closure and proper tissue regeneration, in comparison to the standard treatment. Altogether, this study successfully established a simple, one-step synthesis process of a functionally graded, bioresorbable scaffold for scar-free, native-like, structural and functional regeneration of full-thickness skin wounds. Due to cost-effectiveness, easy synthesis process and microarchitectural features, the designed scaffold possesses a potential of translation to a good commercial wound healing product.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call