Abstract

We developed a single-tube one-step gel-based reverse transcription-recombinase polymerase amplification (RT-RPA)/polymerase chain reaction (PCR) (termed "SOG RT-RPA/PCR") to detect the human immunodeficiency virus (HIV). To improve the assay sensitivity, the RNA template is pre-amplified by RT-RPA prior to PCR. To simplify the detection process and shorten the assay time, we embedded PCR reagents into agarose gel, constructing it to physically separate the reagents from the RT-RPA reaction solution in a single tube. Due to the thermodynamic properties of agarose, the RT-RPA reaction first occurs independently on top of the PCR gel at a low temperature (e.g., 39 °C) during the SOG RT-RPA/PCR assay. Then, the RPA amplicons directly serve as the template for the second PCR amplification reaction, which begins when the PCR agarose dissolves due to the elevated reaction temperature, eliminating the need for multiple manual operations and amplicon transfer. With our SOG RT-RPA/PCR assay, we could detect 6.3 copies of HIV RNA per test, which is a 10-fold higher sensitivity than that of standalone real-time RT-PCR and RT-RPA. In addition, due to the high amplification efficiency of RPA, the SOG RT-RPA/PCR assay shows stronger fluorescence detection signals and a shorter detection time compared to the standalone real-time RT-PCR assay. Furthermore, we detected HIV viral RNA in clinical plasma samples and validated the superior performance of our assay. Thus, the SOG RT-RPA/PCR assay offers a powerful method for simple, rapid, and highly sensitive nucleic acid-based molecular detection of infectious diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.