Abstract
Methods based on the use of multivariate autoregressive models (MVAR) have proved to be an accurate tool for the estimation of functional links between the activity originated in different brain regions. A well-established method for the parameters estimation is the Ordinary Least Square (OLS) approach, followed by an assessment procedure that can be performed by means of Asymptotic Statistic (AS). However, the performances of both procedures are strongly influenced by the number of data samples available, thus limiting the conditions in which brain connectivity can be estimated. The aim of this paper is to introduce and test a regression method based on Least Absolute Shrinkage and Selection Operator (LASSO) to broaden the estimation of brain connectivity to those conditions in which current methods fail due to the limited data points available. We tested the performances of the LASSO regression in a simulation study under different levels of data points available, in comparison with a classical approach based on OLS and AS. Then, the two methods were applied to real electroencephalographic (EEG) signals, recorded during a motor imagery task. The simulation study and the application to real EEG data both indicated that LASSO regression provides better performances than the currently used methodologies for the estimation of brain connectivity when few data points are available. This work paves the way to the estimation and assessment of connectivity patterns with limited data amount and in on-line settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.