Abstract

The observed results for the azimuthal single spin asymmetries (SSAs) of the proton, measured in the semi-inclusive deep inelastic scattering (SIDIS), can be explained by the final-state interaction (FSI) from the gluon exchange between the outgoing quark and the target spectator system. SSAs require a phase difference between two amplitudes coupling the target with opposite spins to the same final state. We have used the model of light front wave functions (LFWFs) consisting of a spin- $ \frac{1}{2}$ system as a composite of a spin- $ \frac{1}{2}$ fermion and a spin-1 vector boson to estimate the SSAs. The implications of such a model have been investigated in detail by considering different coupling constants. The FSIs also produce a complex phase which can be included in the LFWFs to calculate the Sivers and Boer-Mulders distribution functions of the nucleon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call