Abstract

Abstract Recent measurements from the HERMES and SMC Collaborations show a remarkably large azimuthal single-spin asymmetries AUL and AUT of the proton in semi-inclusive pion leptoproduction γ ∗ (q)p→πX . We show that final-state interactions from gluon exchange between the outgoing quark and the target spectator system lead to single-spin asymmetries in deep inelastic lepton–proton scattering at leading twist in perturbative QCD; i.e., the rescattering corrections are not power-law suppressed at large photon virtuality Q2 at fixed xbj. The existence of such single-spin asymmetries requires a phase difference between two amplitudes coupling the proton target with Jzp=±1/2 to the same final-state, the same amplitudes which are necessary to produce a nonzero proton anomalous magnetic moment. We show that the exchange of gauge particles between the outgoing quark and the proton spectators produces a Coulomb-like complex phase which depends on the angular momentum Lz of the proton's constituents and is thus distinct for different proton spin amplitudes. The single-spin asymmetry which arises from such final-state interactions does not factorize into a product of distribution function and fragmentation function, and it is not related to the transversity distribution δq(x,Q) which correlates transversely polarized quarks with the spin of the transversely polarized target nucleon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.