Abstract
Forest fires are caused by various climatic and anthropogenic factors. In Republic of Korea, forest fires occur frequently during spring when the humidity is low. During the past decade, the number of forest fire incidents and the extent of the damaged area have increased. Satellite imagery can be applied to assess damage from these unpredictable forest fires. Despite the increasing threat, there is a lack of comprehensive analysis and effective strategies for addressing these forest fires, particularly considering the diverse topography of Republic of Korea. Herein, we present an approach for the automated detection of forest fire damage using Sentinel-2 images of 14 areas affected by forest fires in Republic of Korea during 2019–2023. The detection performance of deep learning (DL), machine learning, and spectral index methods was analyzed, and the optimal model for detecting forest fire damage was derived. To evaluate the independent performance of the models, two different burned areas exhibiting distinct characteristics were selected as test subjects. To increase the classification accuracy, tests were conducted on various combinations of input channels in DL. The combination of false-color RNG (B4, B8, and B3) images was optimal for detecting forest fire damage. Consequently, among the DL models, the HRNet model achieved excellent results for both test regions with intersection over union scores of 89.40 and 82.49, confirming that the proposed method is applicable for detecting forest fires in diverse Korean landscapes. Thus, suitable mitigation measures can be promptly designed based on the rapid analysis of damaged areas.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have