Abstract

A trajectory surface hopping algorithm is proposed, which stems from a mathematically rigorous analysis of propagation through conical intersections of potential energy surfaces. Since nonadiabatic transitions are only performed when a classical trajectory attains one of its local minimal surface gaps, the algorithm is called single switch surface hopping. Numerical experiments for a two mode Jahn-Teller system are presented, which illustrate the asymptotic justification of the method as well as its good performance in the physically relevant parameter range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.