Abstract

The single switch trajectory surface hopping algorithm is tested for numerical simulations of a two-state three-mode model for the internal conversion of pyrazine through a conical intersection of potential energy surfaces. The algorithm is compared to two other surface hopping approaches, namely, Tully's method of the fewest switches [J. Chem. Phys. 93, 1061 (1990)] and the method by Voronin et al. [J. Phys. Chem. A 102, 6057 (1998)]. The single switch algorithm achieves the most accurate results. Replacing its deterministic nonadiabatic branching condition by a probabilistic accept-reject criterion, one obtains the method of Voronin et al. without momentum adjustment. This probabilistic version of the single switch approach outperforms the considered algorithms in terms of accuracy, memory requirement, and runtime.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.