Abstract

Magnetic chitosan composites (Fe3O4@chitosan) were synthesized in one single-step, characterized and applied in Cr(VI) removal from water. With the increase of loading proportion of chitosan, Cr(VI) adsorption capacity of Fe3O4@chitosan composites increased from 10.771 to 21.040 mg/g. The optimum adsorption capacities of Cr(VI) on Fe3O4@chitosan-3 were found in a pH range of 3.0−5.0. Kinetic study results show that the adsorption process follows pseudo-second-order model, indicating that the rate-limiting step in the adsorption of Cr(VI) involves chemisorptions. Moreover, FT-IR spectra analysis confirms that the amine and hydroxyl groups of chitosan are predominantly responsible for binding. Results from this work demonstrate that the prepared Fe3O4@chitosan composites possess great potential in Cr(VI) removal from contaminated water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.