Abstract

Monacolin J is a key precursor for the synthesis of simvastatin (Zocor), an important drug for treating hypercholesterolemia. Industrially, monacolin J is manufactured through alkaline hydrolysis of lovastatin, a fungal polyketide produced by Aspergillus terreus. Multistep chemical processes for the conversion of lovastatin to simvastatin are laborious, cost expensive and environmentally unfriendly. A biocatalysis process for monacolin J conversion to simvastatin has been developed. However, direct bioproduction of monacolin J has not yet been achieved. Here, we identified a lovastatin hydrolase from Penicillium chrysogenum, which displays a 232-fold higher catalytic efficiency for the in vitro hydrolysis of lovastatin compared to a previously patented hydrolase, but no activity for simvastatin. Furthermore, we showed that an industrial A. terreus strain heterologously expressing this lovastatin hydrolase can produce monacolin J through single-step fermentation with high efficiency, approximately 95% of the biosynthesized lovastatin was hydrolyzed to monacolin J. Our results demonstrate a simple and green technical route for the production of monacolin J, which makes complete bioproduction of the cholesterol-lowering drug simvastatin feasible and promising.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.