Abstract
We introduce a flame-based aerosol process for producing supported non-noble metal nanocatalysts from inexpensive aqueous metal salt solutions, using catalysts for the dry reforming of methane (DRM) as a prototype. A flame-synthesized nickel-doped magnesia (MgO) nanocatalyst (NiMgO-F) was fully physicochemically characterized and tested in a flow reactor system, where it showed stable DRM activity from 500 to 800 °C. A kinetic study was conducted, and apparent activation energies were extracted for the temperature range of 500-650 °C. It was then compared with a Ni-decorated MgO nanopowder prepared by wet impregnation of (1) flame-synthesized MgO (NiMgO-FI) and (2) a commercial MgO nanopowder (NiMgO-CI) and with (3) a NiMgO catalyst prepared by co-precipitation (NiMgO-CP). NiMgO-F showed the highest catalytic activity per mass and per metallic surface area and was stable for continuous H2 production at 700 °C for 50 h. Incorporation of potential promoters and co-catalysts was also demonstrated, but none showed significant performance improvement. More broadly, nanomaterials produced by this approach could be used as binary or multicomponent catalysts for numerous catalytic processes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have