Abstract

In the framework of bio-circular economy, miscanthus biomass was valorized through a single-stage, low severity hydrothermal carbonization process. The produced hydrochars were characterized using elemental and spectroscopic methodologies. It was determined that as the temperature increased so did the C content (47.9 and 68.9% for the samples prepared at 180 and 260 °C, respectively), whereas the O content decreased (from 44.2 to 25.5%, respectively). The adsorption behaviour of the hydrochars was investigated in the adsorption of Cu2+ and NH4+ and MIS-180 was determined as the optimum sample, achieving qmax values of 310 and 71 mg g−1, respectively. Isotherm and kinetic analysis indicated the higher number of O-containing functional groups of MIS-180 as the main reason for its higher adsorption capacities. Furthermore, Cu2+ adsorption followed the 2nd-order kinetic model, whereas NH4+ adsorption followed the 1st-order kinetic model, due to the different mechanisms involved, inner-sphere and outer-sphere complex formation, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call