Abstract

Remediation of toxic metals by bacteria offers a relatively inexpensive and efficient way for the decontamination of soil and associated environments. The present study was carried out to investigate the surface characteristics, adsorption, and remobilization of Cd and Cu on bacteria and their composites with soil colloidal components, which are the most active constituents in soils. The bacterial strain NTG-01 (Enterobacter aerogenes), which was both Cd- and Cu-resistant, was isolated from a heavily Cu-contaminated soil of the mining area in Daye suburb of Hubei Province, China. Batch laboratory experiments with NTG-01 and soil colloids were performed to quantify adsorption of Cu and Cd. The surface area of kaolinite and the soil colloids from an Alfisol and Ultisol increased by 3.0–8.8% after the introduction of the bacteria. In the presence of bacterial cells, the negative charges of soil colloid systems increased and the positive charges decreased, shifting pH from 4.0 to 6.5. Our results demonstrate that bacteria promote the adsorption of Cd and Cu by kaolinite and soil colloid systems. However, the heavy metals bound by the bacterial composites could also be easily released by NH4NO3 and EDTA. Caution should be taken when using such bacterial strains in bioremediation of heavy metal-contaminated soils.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call