Abstract

Wound healing is a complex process and it requires proper scaffolding for regeneration. An ideal scaffold should provide optimal environmental conditions in order to assist cellular attachment, proliferation and differentiation. In this work, a new composite based on polyurethane and neem oil was fabricated using one-step electrospinning technique. Fabricated composite patch along with the pristine polyurethane was characterized through scanning electron microscopy, Fourier transform and infrared spectroscopy, thermogravimetric analysis, contact angle measurement and atomic force microscopy. Moreover, the blood compatibility was evaluated using activated partial thromboplastin time, partial thromboplastin time and haemolysis assay. Scanning electron microscopy studies of composites revealed the existence of fibres with a smaller diameter (635 ± 105 nm) compared to the pristine polyurethane (969 ± 217 nm). Fourier transform and infrared analysis revealed the formation of hydrogen bond and peak shifting characteristics confirming the interaction of the neem oil with the polyurethane. Contact angle analysis showed the decrease in contact angle indicating the hydrophilic nature of the fabricated patch compared to pristine polyurethane. Thermal gravimetric analysis depicted the better thermal stability of the novel composite patch due to the existence of neem oil in the pristine polyurethane. The presence of neem oil in polyurethane matrix also resulted in an increase in the surface roughness as observed in the AFM analysis. The novel composite patch showed an ability to reduce the thrombogenicity and promoting the anticoagulant nature signified by blood compatibility assays like activated partial thromboplastin time and partial thromboplastin time. Finally, the haemolytic percentage of the fabricated composite (1%) was found to be reduced compared to control (2.733%) indicating better blood compatibility and safety with the red blood cells. Following the results, the fabricated patches offered enhanced physicochemical and blood compatible nature making it as a promising candidate for wound healing application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call