Abstract

Learning three-dimensional (3D) shape representation of an object from a single-shot image has been a prevailing topic in computer vision and deep learning over the past few years. Despite extensive adoption in dynamic applications, the measurement accuracy of the 3D shape acquisition from a single-shot image is still unsatisfactory due to a wide range of challenges. We present an accurate 3D shape acquisition method from a single-shot two-dimensional (2D) image using the integration of a structured-light technique and a deep learning approach. Instead of a direct 2D-to-3D transformation, a pattern-to-pattern network is trained to convert a single-color structured-light image to multiple dual-frequency phase-shifted fringe patterns for succeeding 3D shape reconstructions. Fringe projection profilometry, a prominent structured-light technique, is employed to produce high-quality ground-truth labels for training the network and to accomplish the 3D shape reconstruction after predicting the fringe patterns. A series of experiments has been conducted to demonstrate the practicality and potential of the proposed technique for scientific research and industrial applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.