Abstract

We use the bond fluctuation model with explicit solvent to study single polymer chains under poor solvent conditions. Static and dynamic properties of the bond fluctuation model with explicit solvent are compared with the implicit solvent model, and the Θ-temperatures are determined for both solvent models. We show that even in the very poor solvent regime, dynamics is not frozen for the explicit solvent model. We investigate some aspects of the structure of a single collapsed globule and show that rather large chain lengths are necessary to reach the scaling regime of a dense sphere. The force-extension curve of a single polymer chain under poor solvent conditions in the fixed end-to-end distance ensemble is analyzed. We find that the transition of the tadpole conformation to the stretched chain conformation is rather smooth because of fluctuation effects, which is in agreement with recent experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.