Abstract

A machine tool of very high stiffness has been constructed and used for single-point diamond grooving of blanks of soda-lime glass and optical glassy quartz. Results show that below a critical depth of cut predicted in order of magnitude by a fracture mechanics analysis, material is removed by the action of plastic flow, leaving crack-free surfaces. Subsequent observations by scanning electron microscopy indicate that a crucial part in the detachment of ribbons of swarf is played by the operation of residual stresses after the passage of the tool, particularly in the case of the amorphous ceramic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.